Institute of Nano Electronic Engineering

Universiti Malaysia Perlis

  • Facebook
  • Instagram
  • Twitter
  • YouTube
  • About Us
    • Background
    • Mission and Vision
    • Organization
    • Client’s Charter
    • Corporate Video
    • Our Expertise
    • Acknowledgement
    • Brochures
  • Academics
    • Master of Science
    • Doctor of Philosophy
    • Postgraduate Students
    • Alumni
  • Research
    • Research Activities
      • Research Areas
      • Research Focus
      • Research Projects
        • Products
      • Collaborations
      • Publications
        • Scoreboard
    • Research Facilities
  • Contact Us
    • Staff Directory
    • Feedback
  • Gallery
    • Video
    • Audio
  • Download
    • Archive
    • Publications
    • Forms
    • OBE Awareness
    • Reports
  • Quick Links
    • Support Links
    • FAQ
    • Sitemap
    • Faculty
    • Other Departments
    • Events

Fabrication of Silicon Nanowires Array Using E-beam Lithography Integrated with Microfluidic Channel for pH Sensing

March 25, 2015 By Editor

Abstract – Silicon nanowires based biosensors have garnered great potential in serving as highly sensitive, label-free and real-time response biosensing application. These biosensors are useful in detecting pH, DNA molecules, proteins and even single viruses. In this paper, we report the geometrical characteristics and performance of silicon nanowires array for pH level detection. The nanowires are designed for 40 nm, 50 nm and 60 nm diameter sizes. Top-Down Nanofabrication (TDN) is utilized in the development of resist mask and nanowires formation from silicon on insulator (SOI) wafer involving scanning electron microscope (SEM) based electron beam lithography (EBL). The smallest silicon nanowires structure achieved is 40 nm width and 30 nm height. The corresponding source and drain are fabricated via two aluminum (Al) electrodes on top of the silicon nanowires array using conventional lithography process. A 100 µm microfluidic channel is attached on the silicon nanowires for the sample solution transportation. pH level detection are performed based on several types of standard aqueous pH buffer solutions (pH 4, pH 7, pH 10 and pH 12) to test the electrical response of the sensor. Morphological and electrical responses have been proposed to verify the characteristics of the silicon nanowires array based pH sensor.

Keywords – Array, E-beam lithography, microfluidic channel, pH sensor, silicon nanowires

Corresponding Author: Mohd Khairuddin Md Arshad
Corresponding Author’s Email: mohd.khairuddin@unimap.edu.my

Full text: PDF

Filed Under: Publications Tagged With: Array, E-beam lithography, microfluidic channel, pH sensor, silicon nanowires

NEWS @ INEE

  • NanoRoadshow Biotech Exploration – STI 100 Scientists: 100 Schools: 100 Days MOSTI
  • Visit to the Faculty of Science and Trace Analysis and Biosensor COE, Prince of Songkla University
  • Visit and Collaborative Discussion Between INEE, Walailak University, Thailand, and Maejo University Chiang Mai, Thailand
  • Visit by Malaysian Bioeconomy Development Corporation (Bioeconomy Corporation)
  • Staff Retirement Appreciation Ceremony

EVENTS & ACTIVITIES

  • INEE Nano Roadshow – Series 4
  • NanoBiosensor Workshop 2024
  • Invitation To Nanobiosensor Workshop 2024
  • NANO ROADSHOW @ PSNCWU
  • STEM With Community at FESTKON UniMAP 2023
Privacy Policy | Security Policy | Disclaimer | Sitemap | FAQ | Feedback | User Guide | Download | Postgraduate

Institute of Nano Electronic Engineering, Universiti Malaysia Perlis
Lot 106, 108 & 110, Blok A, Taman Pertiwi Indah,
Jalan Kangar-Alor Setar, Seriab 01000 Kangar, Perlis, Malaysia
Tel: +604-979 8581 Fax: +604-979 8578 Email: webmaster.inee@unimap.edu.my

Copyright © INEE UniMAP

  • Facebook
  • Instagram
  • Twitter
  • YouTube

For best view, please use latest version of Internet Explorer, Mozilla Firefox and Google Chrome with resolution 1280 x 768 and above.

BioNexus Partners (BNP)

QS 5 Stars

myGov

Logo UniMAP

Designed by Mohd Isa from Portal Kerjaya & Sumber Rujukan Malaysia