Institute of Nano Electronic Engineering

Universiti Malaysia Perlis

  • Facebook
  • Instagram
  • Twitter
  • YouTube
  • About Us
    • Background
    • Mission and Vision
    • Organization
    • Client’s Charter
    • Corporate Video
    • Our Expertise
    • Acknowledgement
  • Academics
    • Master of Science
    • Doctor of Philosophy
    • Postgraduate Students
    • Alumni
  • Research
    • Research Activities
      • Research Areas
      • Research Focus
      • Research Projects
        • Products
      • Collaborations
      • Publications
        • Scoreboard
    • Research Facilities
  • Contact Us
    • Staff Directory
    • Feedback
  • Gallery
    • Video
    • Audio
  • Download
    • Archive
    • Publications
    • Forms
    • OBE Awareness
    • Reports
  • Quick Links
    • Support Links
    • FAQ
    • Sitemap
    • Faculty
    • Other Departments
    • Events
You are here: Home / Publications / An investigation on GaN/ porous-Si NO2 gas sensor fabricated by pulsed laser ablation in liquid

An investigation on GaN/ porous-Si NO2 gas sensor fabricated by pulsed laser ablation in liquid

June 30, 2022 By Editor

Abstract – Pulsed-laser ablation in liquid was used to prepare GaN nanostructure. The P-type GaN nanostructure was deposited onto the porous-silicon substrate through the drop-casting method for NO2 gas-sensor fabrication. Ablation was performed in ethanol using two laser wavelengths, namely, 532 and 1064 nm. The XRD pattern showed a high and sharp peak at 2θ= 29.49°, indicating enhanced GaN formation using a 532 nm laser wavelength. AFM and FESEM analyses confirmed increased GaN grain growth at the same wavelength. The optical reflectance of the GaN sample showed higher reflectance at 532 nm than at 1064 nm. The optical-energy bandgap was more elevated at 532 nm than at 1064 nm. Photoluminescence analysis revealed that the 532 nm sample had a higher-intensity peak than the 1064 nm one. Device-performance studies showed the most enhanced sensor response (158.49%), highest sensitivity (2.109 ppm), and best response time (13.5 s) at 250 °C for the sample prepared using 532 nm laser wavelength.

Corresponding Author: Prof. Ts. Dr. Uda Hashim
Corresponding Author’s Email: uda@unimap.edu.my

Download Abstract: PDF
Link to Publication: https://doi.org/10.1016/j.snb.2022.132163

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to email a link to a friend (Opens in new window)
  • More
  • Click to share on Reddit (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to print (Opens in new window)
  • Click to share on Telegram (Opens in new window)

Filed Under: Publications Tagged With: Gallium nitride, NO2 gas sensor, Porous Si, Pulsed laser ablation, Sensitivity, Sensor response

NEWS @ INEE

  • Congratulations Prof. Dr. Subash Chandra Bose Gopinath
  • INEE Researchers Won Gold Medal at ITEX 2023
  • Research Collaboration Between INEE and Thaksin University
  • Congratulations to Assoc. Prof. Ts. Dr. Muhammad Mahyiddin Ramli Awarded Research Grant
  • Congratulations to Assoc. Prof. Dr. Shahrir Rizal Kasjo Awarded International Research Grant

EVENTS & ACTIVITIES

  • Online IPB Physics Talk by Dr. Ramzan Mat Ayub
  • Online Webinar Talk: Nanomaterials and Nanosystems for Biomedical ApplicationsOnline Webinar Talk:
  • Call For Paper International Conference on Nanotechnology & Materials Research (IconMAR 2023)
  • Call for Paper IEEE International Conference on Sensor & Nanotechnology (SenNano2023)
  • Call for Papers 2022 Joint International Conference on Nanoscience & Nanoengineering (BOND 21 2022)
Privacy Policy | Security Policy | Disclaimer | Sitemap | FAQ | Feedback | User Guide | Download | Postgraduate

Institute of Nano Electronic Engineering, Universiti Malaysia Perlis
Lot 106, 108 & 110, Blok A, Taman Pertiwi Indah,
Jalan Kangar-Alor Setar, Seriab 01000 Kangar, Perlis, Malaysia
Tel: +604-979 8581 Fax: +604-979 8578 Email: webmaster.inee@unimap.edu.my

Copyright © INEE UniMAP

  • Facebook
  • Instagram
  • Twitter
  • YouTube

For best view, please use latest version of Internet Explorer, Mozilla Firefox and Google Chrome with resolution 1280 x 768 and above.

QS 5 Stars

MQA

MSC Malaysia

myGov

Logo UniMAP

Visits 54940 Total 402306

Designed by Mohd Isa from Portal Kerjaya & Sumber Rujukan Malaysia