Institute of Nano Electronic Engineering

Universiti Malaysia Perlis

  • Facebook
  • Instagram
  • Twitter
  • YouTube
  • About Us
    • Background
    • Mission and Vision
    • Organization
    • Client’s Charter
    • Corporate Video
    • Our Expertise
    • Acknowledgement
    • Brochures
  • Academics
    • Master of Science
    • Doctor of Philosophy
    • Postgraduate Students
    • Alumni
  • Research
    • Research Activities
      • Research Areas
      • Research Focus
      • Research Projects
        • Products
      • Collaborations
      • Publications
        • Scoreboard
    • Research Facilities
  • Contact Us
    • Staff Directory
    • Feedback
  • Gallery
    • Video
    • Audio
  • Download
    • Archive
    • Publications
    • Forms
    • OBE Awareness
    • Reports
  • Quick Links
    • Support Links
    • FAQ
    • Sitemap
    • Faculty
    • Other Departments
    • Events
You are here: Home / Publications / An investigation on GaN/ porous-Si NO2 gas sensor fabricated by pulsed laser ablation in liquid

An investigation on GaN/ porous-Si NO2 gas sensor fabricated by pulsed laser ablation in liquid

June 30, 2022 By Editor

Abstract – Pulsed-laser ablation in liquid was used to prepare GaN nanostructure. The P-type GaN nanostructure was deposited onto the porous-silicon substrate through the drop-casting method for NO2 gas-sensor fabrication. Ablation was performed in ethanol using two laser wavelengths, namely, 532 and 1064 nm. The XRD pattern showed a high and sharp peak at 2θ= 29.49°, indicating enhanced GaN formation using a 532 nm laser wavelength. AFM and FESEM analyses confirmed increased GaN grain growth at the same wavelength. The optical reflectance of the GaN sample showed higher reflectance at 532 nm than at 1064 nm. The optical-energy bandgap was more elevated at 532 nm than at 1064 nm. Photoluminescence analysis revealed that the 532 nm sample had a higher-intensity peak than the 1064 nm one. Device-performance studies showed the most enhanced sensor response (158.49%), highest sensitivity (2.109 ppm), and best response time (13.5 s) at 250 °C for the sample prepared using 532 nm laser wavelength.

Corresponding Author: Prof. Ts. Dr. Uda Hashim
Corresponding Author’s Email: uda@unimap.edu.my

Download Abstract: PDF
Link to Publication: https://doi.org/10.1016/j.snb.2022.132163

Share this:

  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on X (Opens in new window) X
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to email a link to a friend (Opens in new window) Email
  • More
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to print (Opens in new window) Print
  • Click to share on Telegram (Opens in new window) Telegram

Filed Under: Publications Tagged With: Gallium nitride, NO2 gas sensor, Porous Si, Pulsed laser ablation, Sensitivity, Sensor response

NEWS @ INEE

  • NanoRoadshow Biotech Exploration – STI 100 Scientists: 100 Schools: 100 Days MOSTI
  • Visit to the Faculty of Science and Trace Analysis and Biosensor COE, Prince of Songkla University
  • Visit and Collaborative Discussion Between INEE, Walailak University, Thailand, and Maejo University Chiang Mai, Thailand
  • Visit by Malaysian Bioeconomy Development Corporation (Bioeconomy Corporation)
  • Staff Retirement Appreciation Ceremony

EVENTS & ACTIVITIES

  • INEE Nano Roadshow – Series 4
  • NanoBiosensor Workshop 2024
  • Invitation To Nanobiosensor Workshop 2024
  • NANO ROADSHOW @ PSNCWU
  • STEM With Community at FESTKON UniMAP 2023
Privacy Policy | Security Policy | Disclaimer | Sitemap | FAQ | Feedback | User Guide | Download | Postgraduate

Institute of Nano Electronic Engineering, Universiti Malaysia Perlis
Lot 106, 108 & 110, Blok A, Taman Pertiwi Indah,
Jalan Kangar-Alor Setar, Seriab 01000 Kangar, Perlis, Malaysia
Tel: +604-979 8581 Fax: +604-979 8578 Email: webmaster.inee@unimap.edu.my

Copyright © INEE UniMAP

  • Facebook
  • Instagram
  • Twitter
  • YouTube

For best view, please use latest version of Internet Explorer, Mozilla Firefox and Google Chrome with resolution 1280 x 768 and above.

BioNexus Partners (BNP)

QS 5 Stars

myGov

Logo UniMAP

Designed by Mohd Isa from Portal Kerjaya & Sumber Rujukan Malaysia

  • Bahasa Melayu