Institute of Nano Electronic Engineering

Universiti Malaysia Perlis

  • Facebook
  • Instagram
  • Twitter
  • YouTube
  • About Us
    • Background
    • Mission and Vision
    • Organization
    • Client’s Charter
    • Corporate Video
    • Our Expertise
    • Acknowledgement
  • Research
    • Research Facilities
    • Research Activities
      • Research Focus
      • Research Projects
        • Products
      • Postgraduate
        • Current Students
        • Alumni
      • Collaborations
  • Publications
    • Scoreboard
  • Contact Us
    • Staff Directory
    • Feedback
  • Gallery
    • Video
    • Audio
  • Download
    • Archive
    • Publications
    • Forms
    • OBE Awareness
    • Reports
  • Quick Links
    • Support Links
    • FAQ
    • Sitemap
    • Faculty
    • Other Departments
    • Events
You are here: Home / Publications / Carbon nano dots scale by focused ion beam system for MIS diode nano devices

Carbon nano dots scale by focused ion beam system for MIS diode nano devices

October 3, 2012 By Editor

Abstract – Metal-insulator-semiconductor (MIS) structures with a nanocrystal carbon (nc-C) embedded in SiO2 thin films were fabricated using a focused ion beam (FIB) system with a precursor of low-energy Ga+ ion and carbon source. The crystallinity of nc-C was investigated by Raman spectroscopy and atomic force microscopy (AFM). Raman spectra indicate the evidence of crystallization of nc-C after annealed at 600˚C by the sharp peak at 1565 cm-1 in graphite (sp2), while no peak of diamond (sp3) could be seen at 1333 cm-1. The AFM images showed the nc-C dots controlled with diameter of 100 nm, 200 nm and 300 nm, respectively. The above results revealed that the nc-C dots had sufficiently stuck onto SiO2 films. The hysterisis loop in the capacitance–voltage characteristics appeared in the MIS device with SiO2/nc-C/SiO2 structure in which voltage shift is 0.32 V for radical oxidation and 0.14 V for dry oxidation, respectively.

Keywords – Carbon; Nanocrystal; Memory device; Focused ion beam; Raman spectroscopy; Atomic force microscopy

Corresponding Author: Ruslinda Abdul Rahim
Corresponding Author’s Email: ruslinda@unimap.edu.my

Full text: PDF

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to email a link to a friend (Opens in new window)
  • More
  • Click to share on Reddit (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to print (Opens in new window)
  • Click to share on Telegram (Opens in new window)

Filed Under: Publications Tagged With: Atomic force microscopy, Carbon, Focused ion beam, Memory device, Nanocrystal, Raman spectroscopy

NEWS @ INEE

  • Postgraduate Studies Opportunity
  • Congratulations Prof. Ir. Dr. Mohd Khairuddin Md Arshad
  • Assoc. Prof. Ts. Dr. Muhammad Mahyiddin Ramli Appointed as New Director of INEE
  • Assoc. Prof. Ts. Dr. Foo Kai Loong Appointed as New Deputy Director of INEE
  • Dr. Mohamad Faris Mohamad Fathil Appointed as New Postgraduate Program Chairman of INEE

EVENTS & ACTIVITIES

  • Call for Paper IEEE International Conference on Sensor & Nanotechnology (SenNano2023)
  • Call for Papers 2022 Joint International Conference on Nanoscience & Nanoengineering (BOND 21 2022)
  • Trace Analysis and Biosensor International Symposium I: Emerging Challenges and Opportunities
  • CSR & STEM Programme: Exploration in The Nano World
  • Nanotechnology and Biosensor Colloquium 2019
Privacy Policy | Security Policy | Disclaimer | Sitemap | FAQ | Feedback | User Guide | Download | Postgraduate

Institute of Nano Electronic Engineering, Universiti Malaysia Perlis
Lot 106, 108 & 110, Blok A, Taman Pertiwi Indah,
Jalan Kangar-Alor Setar, Seriab 01000 Kangar, Perlis, Malaysia
Tel: +604-979 8581 Fax: +604-979 8578 Email: webmaster.inee@unimap.edu.my

Copyright © INEE UniMAP

  • Facebook
  • Instagram
  • Twitter
  • YouTube

For best view, please use latest version of Internet Explorer, Mozilla Firefox and Google Chrome with resolution 1280 x 768 and above.

QS 5 Stars

MQA

MSC Malaysia

myGov

Logo UniMAP

Visits 515 Total 190849

Designed by Mohd Isa from Portal Kerjaya & Sumber Informasi Malaysia