Institute of Nano Electronic Engineering

Universiti Malaysia Perlis

  • Facebook
  • Instagram
  • Twitter
  • YouTube
  • About Us
    • Background
    • Mission and Vision
    • Organization
    • Client’s Charter
    • Corporate Video
    • Our Expertise
    • Acknowledgement
  • Research
    • Research Facilities
    • Research Activities
      • Research Focus
      • Research Projects
        • Products
      • Postgraduate
        • Current Students
        • Alumni
      • Collaborations
  • Publications
    • Scoreboard
  • Contact Us
    • Staff Directory
    • Feedback
  • Gallery
    • Video
    • Audio
  • Download
    • Archive
    • Publications
    • Forms
    • OBE Awareness
    • Reports
  • Quick Links
    • Support Links
    • FAQ
    • Sitemap
    • Faculty
    • Other Departments
You are here: Home / Publications / Design and fabrication of PDMS microfluidics device for rapid and label-free DNA detection

Design and fabrication of PDMS microfluidics device for rapid and label-free DNA detection

March 24, 2020 By Editor

Abstract – Microfluidics explores the manipulation of fluid in small volume, a multidisciplinary field is imperative for DNA extraction. This study offers a simple yet substantial methodology for the fabrication of microfluidics structure-based polydimethylsiloxane (PDMS) biopolymer on a glass substrate with SU-8 photoresist for label-free detection of pathogenic genomic DNA. Two microfluidics designs for DNA detection were based on AutoCAD software, both contain two inlets and one outlet, with dimensions of 28 mm wide, and 18 mm long, and total surface area of 504 mm2. The designs were patterned in such particular sizes and dimensions to test fluid delivery and enhancement in biochemical processes in DNA extraction, while maintaining economical values as a disposable chip. Both microfluidics devices showed no leakage during fluid delivery, have heights of 97.97 and 103.44 μm, and surface roughness of 0.15 and 0.07 μm, respectively. DNA extraction from pathogenic fungus Ganoderma boninense was run on PDMS microfluidic device and UV–Vis analysis confirmed successful extraction with peaks found at 260–280 nm. Current–voltage (I–V) measurement confirmed the accuracy of microfluidic device for the specific pathogen with both real and synthetic samples of G. boninense illustrating the similar graph values of only 0.000005 A difference at 1.0 V after hybridization.

Corresponding Author: Prof. Dr. Uda Hashim
Corresponding Author’s Email: uda@unimap.edu.my

Download Abstract: PDF

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to email this to a friend (Opens in new window)
  • More
  • Click to share on Reddit (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to print (Opens in new window)
  • Click to share on Telegram (Opens in new window)

Filed Under: Publications Tagged With: Biosensor, dna extraction, ganoderma boninense, lab-on-a-chip, microfluidics

NEWS @ INEE

  • UniMAP Top 10 Researcher in 2.76.39 Graphene Reseach
  • 2021 INEE Staff Promotion
  • INEE Wins 100% Medal at EREKA 2021
  • INEE Researcher Awarded FRGS 2020 Grant
  • Congratulations to Assoc. Prof. Ir. Dr. Mohd Khairuddin and team for a publication in Current Medicinal Chemistry

EVENTS & ACTIVITIES

  • Call for Papers 2022 Joint International Conference on Nanoscience & Nanoengineering (BOND 21 2022)
  • Trace Analysis and Biosensor International Symposium I: Emerging Challenges and Opportunities
  • CSR & STEM Programme: Exploration in The Nano World
  • Nanotechnology and Biosensor Colloquium 2019
  • Transformation of Smart Sensor Technology in Real World
Privacy Policy | Security Policy | Disclaimer | Sitemap | FAQ | Feedback | User Guide | Download | Postgraduate

Institute of Nano Electronic Engineering, Universiti Malaysia Perlis
Lot 106, 108 & 110, Blok A, Taman Pertiwi Indah,
Jalan Kangar-Alor Setar, Seriab 01000 Kangar, Perlis, Malaysia
Tel: +604-979 8581 Fax: +604-979 8578 Email: webmaster.inee@unimap.edu.my

Copyright © INEE UniMAP

For best view, please use latest version of Internet Explorer, Mozilla Firefox and Google Chrome with resolution 1280 x 768 and above.

QS 5 Stars

MQA

MSC Malaysia

myGov

UniMAP




Designed by Mohd Isa from Portal Kerjaya & Sumber Informasi Malaysia

loading Cancel
Post was not sent - check your email addresses!
Email check failed, please try again
Sorry, your blog cannot share posts by email.