Institute of Nano Electronic Engineering

Universiti Malaysia Perlis

  • Facebook
  • Instagram
  • Twitter
  • YouTube
  • About Us
    • Background
    • Mission and Vision
    • Organization
    • Client’s Charter
    • Corporate Video
    • Our Expertise
    • Acknowledgement
  • Research
    • Research Facilities
    • Research Activities
      • Research Focus
      • Research Projects
        • Products
      • Postgraduate
        • Current Students
        • Alumni
      • Collaborations
  • Publications
    • Scoreboard
  • Contact Us
    • Staff Directory
    • Feedback
  • Gallery
    • Video
    • Audio
  • Download
    • Archive
    • Publications
    • Forms
    • OBE Awareness
    • Reports
  • Quick Links
    • Support Links
    • FAQ
    • Sitemap
    • Faculty
    • Other Departments
    • Events
You are here: Home / Publications / Eco-friendly synthesis of Solanum trilobatum extract-capped silver nanoparticles is compatible with good antimicrobial activities

Eco-friendly synthesis of Solanum trilobatum extract-capped silver nanoparticles is compatible with good antimicrobial activities

March 19, 2018 By Editor

Abstract – This study focused on the evaluation of antimicrobial activity of silver nanoparticles (AgNPs) after their green synthesis by means of a Solanum trilobatum bark extract. The obtained product with an intense surface plasmon resonance band at ∼442 nm with UV–visible spectroscopic analysis indicated the formation of AgNPs. The morphology of AgNPs was observed under transmission electron microscopy and field emission scanning electron microscopy, displayed that the eco-friendly synthesized AgNPs have a spherical shape with an average size of ∼25 nm in diameter. X-ray powder diffraction and selected area electron diffraction analyses confirmed that the AgNPs are crystalline in nature. Fourier transform infrared spectroscopy indicated that the AgNPs capped with active ingredients of the bark extract. X-ray photoelectron spectroscopy revealed elemental composition of the AgNPs. The performance of S. trilobatum bark extract-capped AgNPs in terms of inhibition of microbial growth was studied by disc diffusion and well diffusion assays. Eco-friendly synthesized S. trilobatum extract-capped AgNPs were found to possess enhanced antimicrobial properties: growth inhibition of gram-negative and gram-positive bacteria and of fungal species. These results demonstrated the potential applications of the indigenous medicinal plants to the field of nanotechnology.

Corresponding Author: Subash C B Gopinath
Corresponding Author’s Email: subash@unimap.edu.my

Download: PDF

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to email a link to a friend (Opens in new window)
  • More
  • Click to share on Reddit (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to print (Opens in new window)
  • Click to share on Telegram (Opens in new window)

Filed Under: Publications Tagged With: Antimicrobial activity, Green synthesis, Medicinal plant, Silver nanoparticle, Solanum trilobatum

NEWS @ INEE

  • Postgraduate Studies Opportunity
  • Congratulations Prof. Ir. Dr. Mohd Khairuddin Md Arshad
  • Assoc. Prof. Ts. Dr. Muhammad Mahyiddin Ramli Appointed as New Director of INEE
  • Assoc. Prof. Ts. Dr. Foo Kai Loong Appointed as New Deputy Director of INEE
  • Dr. Mohamad Faris Mohamad Fathil Appointed as New Postgraduate Program Chairman of INEE

EVENTS & ACTIVITIES

  • Call for Paper IEEE International Conference on Sensor & Nanotechnology (SenNano2023)
  • Call for Papers 2022 Joint International Conference on Nanoscience & Nanoengineering (BOND 21 2022)
  • Trace Analysis and Biosensor International Symposium I: Emerging Challenges and Opportunities
  • CSR & STEM Programme: Exploration in The Nano World
  • Nanotechnology and Biosensor Colloquium 2019
Privacy Policy | Security Policy | Disclaimer | Sitemap | FAQ | Feedback | User Guide | Download | Postgraduate

Institute of Nano Electronic Engineering, Universiti Malaysia Perlis
Lot 106, 108 & 110, Blok A, Taman Pertiwi Indah,
Jalan Kangar-Alor Setar, Seriab 01000 Kangar, Perlis, Malaysia
Tel: +604-979 8581 Fax: +604-979 8578 Email: webmaster.inee@unimap.edu.my

Copyright © INEE UniMAP

  • Facebook
  • Instagram
  • Twitter
  • YouTube

For best view, please use latest version of Internet Explorer, Mozilla Firefox and Google Chrome with resolution 1280 x 768 and above.

QS 5 Stars

MQA

MSC Malaysia

myGov

Logo UniMAP

Visits 375 Total 191000

Designed by Mohd Isa from Portal Kerjaya & Sumber Informasi Malaysia