Institute of Nano Electronic Engineering

Universiti Malaysia Perlis

  • Facebook
  • Instagram
  • Twitter
  • YouTube
  • About Us
    • Background
    • Mission and Vision
    • Organization
    • Client’s Charter
    • Corporate Video
    • Our Expertise
    • Acknowledgement
  • Research
    • Research Facilities
    • Research Activities
      • Research Focus
      • Research Projects
        • Products
      • Postgraduate
        • Current Students
        • Alumni
      • Collaborations
  • Publications
    • Scoreboard
  • Contact Us
    • Staff Directory
    • Feedback
  • Gallery
    • Video
    • Audio
  • Download
    • Archive
    • Publications
    • Forms
    • OBE Awareness
    • Reports
  • Quick Links
    • Support Links
    • FAQ
    • Sitemap
    • Faculty
    • Other Departments
    • Events
You are here: Home / Publications / Fabrication and Characterization of 50 nm Silicon Nano-Gap Structures

Fabrication and Characterization of 50 nm Silicon Nano-Gap Structures

October 24, 2012 By Editor

Abstract – A simple method for the fabrication of nano-gaps less than 50 nm by using conventional photolithography combined with patterned-size reduction techniques is presented. Silicon material is used to fabricate the nano-gap structure and gold is used for the electrode. Two chrome masks are proposed to complete this work, the first mask for the nano-gap pattern and a second mask for the electrode. The method is based on the control of the coefficients (temperature and time) with an improved pattern size resolution by thermal oxidation. With this technique, there are no principal limitations to fabricating anostructures with different layouts down to several nanometers in dimension. In this work, the proposed method is experimentally demonstrated by preparing the nano-gaps on a Si–SiO2 substrate down to dimensions of 50 nm. The optical characterization that is applied to check the nano-gap structure is by using the scanning electron microscope (SEM).

Keywords – Nano-Gap, Pattern-Size Reduction, Nanostructure, Optical Characterization, Photolithography.

Corresponding Author: Uda Hashim
Corresponding Author’s Email: uda@unimap.edu.my

Full text: PDF

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to email a link to a friend (Opens in new window)
  • More
  • Click to share on Reddit (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to print (Opens in new window)
  • Click to share on Telegram (Opens in new window)

Filed Under: Publications Tagged With: Nano-Gap, Nanostructure, Optical Characterization, Pattern-Size Reduction, Photolithography

NEWS @ INEE

  • Postgraduate Studies Opportunity
  • Congratulations Prof. Ir. Dr. Mohd Khairuddin Md Arshad
  • Assoc. Prof. Ts. Dr. Muhammad Mahyiddin Ramli Appointed as New Director of INEE
  • Assoc. Prof. Ts. Dr. Foo Kai Loong Appointed as New Deputy Director of INEE
  • Dr. Mohamad Faris Mohamad Fathil Appointed as New Postgraduate Program Chairman of INEE

EVENTS & ACTIVITIES

  • Call for Paper IEEE International Conference on Sensor & Nanotechnology (SenNano2023)
  • Call for Papers 2022 Joint International Conference on Nanoscience & Nanoengineering (BOND 21 2022)
  • Trace Analysis and Biosensor International Symposium I: Emerging Challenges and Opportunities
  • CSR & STEM Programme: Exploration in The Nano World
  • Nanotechnology and Biosensor Colloquium 2019
Privacy Policy | Security Policy | Disclaimer | Sitemap | FAQ | Feedback | User Guide | Download | Postgraduate

Institute of Nano Electronic Engineering, Universiti Malaysia Perlis
Lot 106, 108 & 110, Blok A, Taman Pertiwi Indah,
Jalan Kangar-Alor Setar, Seriab 01000 Kangar, Perlis, Malaysia
Tel: +604-979 8581 Fax: +604-979 8578 Email: webmaster.inee@unimap.edu.my

Copyright © INEE UniMAP

  • Facebook
  • Instagram
  • Twitter
  • YouTube

For best view, please use latest version of Internet Explorer, Mozilla Firefox and Google Chrome with resolution 1280 x 768 and above.

QS 5 Stars

MQA

MSC Malaysia

myGov

Logo UniMAP

Visits 390 Total 190798

Designed by Mohd Isa from Portal Kerjaya & Sumber Informasi Malaysia