Institute of Nano Electronic Engineering

Universiti Malaysia Perlis

  • Facebook
  • Instagram
  • Twitter
  • YouTube
  • About Us
    • Background
    • Mission and Vision
    • Organization
    • Client’s Charter
    • Corporate Video
    • Our Expertise
    • Acknowledgement
    • Brochures
  • Academics
    • Master of Science
    • Doctor of Philosophy
    • Postgraduate Students
    • Alumni
  • Research
    • Research Activities
      • Research Areas
      • Research Focus
      • Research Projects
        • Products
      • Collaborations
      • Publications
        • Scoreboard
    • Research Facilities
  • Contact Us
    • Staff Directory
    • Feedback
  • Gallery
    • Video
    • Audio
  • Download
    • Archive
    • Publications
    • Forms
    • OBE Awareness
    • Reports
  • Quick Links
    • Support Links
    • FAQ
    • Sitemap
    • Faculty
    • Other Departments
    • Events
You are here: Home / Publications / Functionalised zinc oxide nanotube arrays as electrochemical sensors for the selective determination of glucose

Functionalised zinc oxide nanotube arrays as electrochemical sensors for the selective determination of glucose

September 9, 2014 By Editor

Abstract – In the present study, highly oriented single-crystal zinc oxide nanotube (ZnO-NT) arrays were prepared by a trimming of ZnO nanorods along the c-axis on the gold-coated glass substrate having a diameter of 100–200nm and a length of ~1µm using a low-temperature aqueous chemical growth process. The prepared (ZnO-NT) arrays were further used as electrochemical enzyme-based glucose sensors through immobilisation of glucose oxidase by the physical adsorption method in conjunction with a Nafion coating. The electrochemical response of the sensor was found to be linear over a relatively wide logarithmic concentration range from 0.5×10-6 to 12×10-3 M. The proposed sensor showed a high sensitivity of 69.12 mV/decade with R=0.9934 for sensing of glucose. A fast-response time less than 4s with good selectivity, reproducibility and negligible response to common interferents such as ascorbic acid and uric acid prevailed.

Keywords – zinc oxide nanotube, chemical, glucose

Corresponding Author: Uda Hashim
Corresponding Author’s Email: uda@unimap.edu.my

Full text: PDF

Share this:

  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on X (Opens in new window) X
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to email a link to a friend (Opens in new window) Email
  • More
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to print (Opens in new window) Print
  • Click to share on Telegram (Opens in new window) Telegram

Filed Under: Publications Tagged With: chemical, glucose, zinc oxide nanotube

NEWS @ INEE

  • Congratulations to the 2024 Excellence & Service Award Recipients
  • NanoRoadshow Biotech Exploration – STI 100 Scientists: 100 Schools: 100 Days MOSTI
  • Visit to the Faculty of Science and Trace Analysis and Biosensor COE, Prince of Songkla University
  • Visit and Collaborative Discussion Between INEE, Walailak University, Thailand, and Maejo University Chiang Mai, Thailand
  • Visit by Malaysian Bioeconomy Development Corporation (Bioeconomy Corporation)

EVENTS & ACTIVITIES

  • INEE Nano Roadshow – Series 4
  • NanoBiosensor Workshop 2024
  • Invitation To Nanobiosensor Workshop 2024
  • NANO ROADSHOW @ PSNCWU
  • STEM With Community at FESTKON UniMAP 2023
Privacy Policy | Security Policy | Disclaimer | Sitemap | FAQ | Feedback | User Guide | Download | Postgraduate

Institute of Nano Electronic Engineering, Universiti Malaysia Perlis
Lot 106, 108 & 110, Blok A, Taman Pertiwi Indah,
Jalan Kangar-Alor Setar, Seriab 01000 Kangar, Perlis, Malaysia
Tel: +604-979 8581 Fax: +604-979 8578 Email: webmaster.inee@unimap.edu.my

Copyright © INEE UniMAP

  • Facebook
  • Instagram
  • Twitter
  • YouTube

For best view, please use latest version of Internet Explorer, Mozilla Firefox and Google Chrome with resolution 1280 x 768 and above.

BioNexus Partners (BNP)

QS 5 Stars

myGov

Logo UniMAP

Designed by Mohd Isa from Portal Kerjaya & Sumber Rujukan Malaysia

  • Bahasa Melayu