Institute of Nano Electronic Engineering

Universiti Malaysia Perlis

  • Facebook
  • Instagram
  • Twitter
  • YouTube
  • About Us
    • Background
    • Mission and Vision
    • Organization
    • Client’s Charter
    • Corporate Video
    • Our Expertise
    • Acknowledgement
  • Research
    • Research Facilities
    • Research Activities
      • Research Focus
      • Research Projects
        • Products
      • Postgraduate
        • Current Students
        • Alumni
      • Collaborations
  • Publications
    • Scoreboard
  • Contact Us
    • Staff Directory
    • Feedback
  • Gallery
    • Video
    • Audio
  • Download
    • Archive
    • Publications
    • Forms
    • OBE Awareness
    • Reports
  • Quick Links
    • Support Links
    • FAQ
    • Sitemap
    • Faculty
    • Other Departments
    • Events

Fabrication and characterization of ONO and tunnel oxide for 16k FLOTOX EEPROM cell

September 25, 2012 By Editor

Abstract – The EEPROM process is one the hardest process to be developed. The performance of the EEPROM devices is normally judged on the programming speed, which relates to program high (erase) and program low (write) operations. It is essential that the program high and program low speed of the EEPROM cell is within 1ms with a programming voltage of not more than 16V. In this study, two experiments were setup to improve the programming speed. The first experiment was to increase the high voltage NMOS drain junction breakdown voltage with the source floating (HVNMOS BVDSF), and the second experiment was to scale down the ONO layer. The characterization work to increase the programming speed of the memory cell of 16k FLOTOX EEPROM has been carried out. P-field implant dose is optimized to have both the HVNMOS BVDSF and the p-field threshold voltage above 16V for fast programming. As a result, the threshold voltages of programming high and low operation are achieved at 4.35V and .0.77V respectively. Furthermore, by scaling down the nitride layer of ONO from 160Å to 130Å, the Vt program window is further improved to 4.5V and .0.94V for the program high and program low operations respectively.

Keywords – EEPROM, memory cell, threshold voltage, program high, program low, ONO, nitride layer.

Corresponding Author: R.M. Ayub
Corresponding Author’s Email: ramzan@unimap.edu.my

Full text: PDF

Filed Under: Publications Tagged With: EEPROM, memory cell, nitride layer., ONO, program high, program low, threshold voltage

NEWS @ INEE

  • Postgraduate Studies Opportunity
  • Congratulations Prof. Ir. Dr. Mohd Khairuddin Md Arshad
  • Assoc. Prof. Ts. Dr. Muhammad Mahyiddin Ramli Appointed as New Director of INEE
  • Assoc. Prof. Ts. Dr. Foo Kai Loong Appointed as New Deputy Director of INEE
  • Dr. Mohamad Faris Mohamad Fathil Appointed as New Postgraduate Program Chairman of INEE

EVENTS & ACTIVITIES

  • Call for Papers 2022 Joint International Conference on Nanoscience & Nanoengineering (BOND 21 2022)
  • Trace Analysis and Biosensor International Symposium I: Emerging Challenges and Opportunities
  • CSR & STEM Programme: Exploration in The Nano World
  • Nanotechnology and Biosensor Colloquium 2019
  • Transformation of Smart Sensor Technology in Real World
Privacy Policy | Security Policy | Disclaimer | Sitemap | FAQ | Feedback | User Guide | Download | Postgraduate

Institute of Nano Electronic Engineering, Universiti Malaysia Perlis
Lot 106, 108 & 110, Blok A, Taman Pertiwi Indah,
Jalan Kangar-Alor Setar, Seriab 01000 Kangar, Perlis, Malaysia
Tel: +604-979 8581 Fax: +604-979 8578 Email: webmaster.inee@unimap.edu.my

Copyright © INEE UniMAP

  • Facebook
  • Instagram
  • Twitter
  • YouTube

For best view, please use latest version of Internet Explorer, Mozilla Firefox and Google Chrome with resolution 1280 x 768 and above.

QS 5 Stars

MQA

MSC Malaysia

myGov

Logo UniMAP

Visits Total 182790

Designed by Mohd Isa from Portal Kerjaya & Sumber Informasi Malaysia