Institute of Nano Electronic Engineering

Universiti Malaysia Perlis

  • Facebook
  • Instagram
  • Twitter
  • YouTube
  • About Us
    • Background
    • Mission and Vision
    • Organization
    • Client’s Charter
    • Corporate Video
    • Our Expertise
    • Acknowledgement
    • Brochures
  • Academics
    • Master of Science
    • Doctor of Philosophy
    • Postgraduate Students
    • Alumni
  • Research
    • Research Activities
      • Research Areas
      • Research Focus
      • Research Projects
        • Products
      • Collaborations
      • Publications
        • Scoreboard
    • Research Facilities
  • Contact Us
    • Staff Directory
    • Feedback
  • Gallery
    • Video
    • Audio
  • Download
    • Archive
    • Publications
    • Forms
    • OBE Awareness
    • Reports
  • Quick Links
    • Support Links
    • FAQ
    • Sitemap
    • Faculty
    • Other Departments
    • Events
You are here: Home / Publications / Current and future envision on developing biosensors aided by 2D molybdenum disulfide (MoS 2 ) productions

Current and future envision on developing biosensors aided by 2D molybdenum disulfide (MoS 2 ) productions

July 2, 2019 By Editor

Abstract – Two-dimensional (2D) layered nanomaterials have triggered an intensive interest due to the fascinating physiochemical properties with the exceptional physical, optical and electrical characteristics that transpired from the quantum size effect of their ultra-thin structure. Among the family of 2D nanomaterials, molybdenum disulfide (MoS 2 ) features distinct characteristics related to the existence of direct energy bandgap, which significantly lowers the leakage current and surpasses other 2D materials. In this overview, we expatiate the novel strategies to synthesize MoS 2 that cover techniques such as liquid exfoliation, chemical vapour deposition, mechanical exfoliation, hydrothermal reaction, and Van Der Waal epitaxial growth on the substrate. We extend the discussion on the recent progress in biosensing applications of the produced MoS 2 , highlighting the important surface-to-volume of ultrathin MoS 2 structure, which enhances the overall performance of the devices. Further, envisioned the missing piece with the current MoS 2 -based biosensors towards developing the future strategies.

Corresponding Author: Mohd Khairuddin Md Arshad
Corresponding Author’s Email: mohd.khairuddin@unimap.edu.my

Download: PDF

Share this:

  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on X (Opens in new window) X
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to email a link to a friend (Opens in new window) Email
  • More
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to print (Opens in new window) Print
  • Click to share on Telegram (Opens in new window) Telegram

Filed Under: Publications Tagged With: 2D Materials, Biosensors, Label-based, Label-free, Molybdenum disulfide

NEWS @ INEE

  • NanoRoadshow Biotech Exploration – STI 100 Scientists: 100 Schools: 100 Days MOSTI
  • Visit to the Faculty of Science and Trace Analysis and Biosensor COE, Prince of Songkla University
  • Visit and Collaborative Discussion Between INEE, Walailak University, Thailand, and Maejo University Chiang Mai, Thailand
  • Visit by Malaysian Bioeconomy Development Corporation (Bioeconomy Corporation)
  • Staff Retirement Appreciation Ceremony

EVENTS & ACTIVITIES

  • INEE Nano Roadshow – Series 4
  • NanoBiosensor Workshop 2024
  • Invitation To Nanobiosensor Workshop 2024
  • NANO ROADSHOW @ PSNCWU
  • STEM With Community at FESTKON UniMAP 2023
Privacy Policy | Security Policy | Disclaimer | Sitemap | FAQ | Feedback | User Guide | Download | Postgraduate

Institute of Nano Electronic Engineering, Universiti Malaysia Perlis
Lot 106, 108 & 110, Blok A, Taman Pertiwi Indah,
Jalan Kangar-Alor Setar, Seriab 01000 Kangar, Perlis, Malaysia
Tel: +604-979 8581 Fax: +604-979 8578 Email: webmaster.inee@unimap.edu.my

Copyright © INEE UniMAP

  • Facebook
  • Instagram
  • Twitter
  • YouTube

For best view, please use latest version of Internet Explorer, Mozilla Firefox and Google Chrome with resolution 1280 x 768 and above.

BioNexus Partners (BNP)

QS 5 Stars

myGov

Logo UniMAP

Designed by Mohd Isa from Portal Kerjaya & Sumber Rujukan Malaysia

  • Bahasa Melayu