Institute of Nano Electronic Engineering

Universiti Malaysia Perlis

  • Facebook
  • Instagram
  • Twitter
  • YouTube
  • About Us
    • Background
    • Mission and Vision
    • Organization
    • Client’s Charter
    • Corporate Video
    • Our Expertise
    • Acknowledgement
  • Research
    • Research Facilities
    • Research Activities
      • Research Focus
      • Research Projects
        • Products
      • Postgraduate
        • Current Students
        • Alumni
      • Collaborations
  • Publications
    • Scoreboard
  • Contact Us
    • Staff Directory
    • Feedback
  • Gallery
    • Video
    • Audio
  • Download
    • Archive
    • Publications
    • Forms
    • OBE Awareness
    • Reports
  • Quick Links
    • Support Links
    • FAQ
    • Sitemap
    • Faculty
    • Other Departments
    • Events
You are here: Home / Publications / Formation of nanocrystalline GeSn thin film on Si substrate by sputtering and rapid thermal annealing

Formation of nanocrystalline GeSn thin film on Si substrate by sputtering and rapid thermal annealing

September 25, 2016 By Editor

Abstract – Nanocrystalline Ge1-xSnx thin films have been formed after rapid thermal annealing of sputtered GeSn layers. The alloy films were deposited onto the Silicon (100) substrate via low cost radio frequency magnetron sputtering. Then, the films were annealed by rapid thermal annealing at 350 °C, 400 °C, and 450 °C for 10 s. The morphological, structural, and optical properties of the layers were investigated with field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and high-resolution X-ray diffraction (HR-XRD). The Raman analysis showed that the only observed phonon mode is attributed to Ge-Ge vibrations. Raman phonon intensities of GeSn thin films were enhanced with increasing the annealing temperature. The results clearly revealed that by increasing the annealing temperature the crystalline quality of the films were improved. The XRD measurements revealed the nanocrystalline phase formation in the annealed films with (111) preferred orientation. The results showed the potentiality of using the sputtering technique and rapid thermal anneal to produce crystalline GeSn layer.

Keywords – Germanium-tin, HR-XRD, Nanocrystalline materials, Raman spectroscopy, Sputtering, Thin films

Corresponding Author: Uda Hashim
Corresponding Author’s Email: uda@unimap.edu.my

Full text: PDF

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to email a link to a friend (Opens in new window)
  • More
  • Click to share on Reddit (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to print (Opens in new window)
  • Click to share on Telegram (Opens in new window)

Filed Under: Publications Tagged With: Germanium-tin, HR-XRD, Nanocrystalline materials, Raman spectroscopy, Sputtering, Thin films

NEWS @ INEE

  • Postgraduate Studies Opportunity
  • Congratulations Prof. Ir. Dr. Mohd Khairuddin Md Arshad
  • Assoc. Prof. Ts. Dr. Muhammad Mahyiddin Ramli Appointed as New Director of INEE
  • Assoc. Prof. Ts. Dr. Foo Kai Loong Appointed as New Deputy Director of INEE
  • Dr. Mohamad Faris Mohamad Fathil Appointed as New Postgraduate Program Chairman of INEE

EVENTS & ACTIVITIES

  • Call for Paper IEEE International Conference on Sensor & Nanotechnology (SenNano2023)
  • Call for Papers 2022 Joint International Conference on Nanoscience & Nanoengineering (BOND 21 2022)
  • Trace Analysis and Biosensor International Symposium I: Emerging Challenges and Opportunities
  • CSR & STEM Programme: Exploration in The Nano World
  • Nanotechnology and Biosensor Colloquium 2019
Privacy Policy | Security Policy | Disclaimer | Sitemap | FAQ | Feedback | User Guide | Download | Postgraduate

Institute of Nano Electronic Engineering, Universiti Malaysia Perlis
Lot 106, 108 & 110, Blok A, Taman Pertiwi Indah,
Jalan Kangar-Alor Setar, Seriab 01000 Kangar, Perlis, Malaysia
Tel: +604-979 8581 Fax: +604-979 8578 Email: webmaster.inee@unimap.edu.my

Copyright © INEE UniMAP

  • Facebook
  • Instagram
  • Twitter
  • YouTube

For best view, please use latest version of Internet Explorer, Mozilla Firefox and Google Chrome with resolution 1280 x 768 and above.

QS 5 Stars

MQA

MSC Malaysia

myGov

Logo UniMAP

Visits 512 Total 190848

Designed by Mohd Isa from Portal Kerjaya & Sumber Informasi Malaysia