Institute of Nano Electronic Engineering

Universiti Malaysia Perlis

  • Facebook
  • Instagram
  • Twitter
  • YouTube
  • About Us
    • Background
    • Mission and Vision
    • Organization
    • Client’s Charter
    • Corporate Video
    • Our Expertise
    • Acknowledgement
    • Brochures
  • Academics
    • Master of Science
    • Doctor of Philosophy
    • Postgraduate Students
    • Alumni
  • Research
    • Research Activities
      • Research Areas
      • Research Focus
      • Research Projects
        • Products
      • Collaborations
      • Publications
        • Scoreboard
    • Research Facilities
  • Contact Us
    • Staff Directory
    • Feedback
  • Gallery
    • Video
    • Audio
  • Download
    • Archive
    • Publications
    • Forms
    • OBE Awareness
    • Reports
  • Quick Links
    • Support Links
    • FAQ
    • Sitemap
    • Faculty
    • Other Departments
    • Events

Mixed Mode Postgraduate Studies

April 12, 2017 By Editor

Mixed Mode UniMAP

For more details please visit Centre for Graduate Studies

Filed Under: News Tagged With: mixed mode, postgraduate

INEE Excellence In EREKA UniMAP 2017

March 17, 2017 By Editor

Filed Under: News Tagged With: ereka, ereka 2017, ereka unimap

INEE Researchers Receive Awards From UniMAP

March 17, 2017 By Editor

Anugerah Seri Gemilang UniMAP 2017

Anugerah Seri Gemilang UniMAP 2017

Anugerah Seri Gemilang UniMAP 2017

Filed Under: News Tagged With: anugerah seri gemilang unimap, slides

Substrate-gate coupling in ZnO-FET biosensor for cardiac troponin I detection

March 17, 2017 By Editor

Abstract – Currently, field-effect transistor (FET)-based biosensors have been implemented in several portable sensors with the ultimate application in point-of-care testing (POCT). In this paper, we have designed substrate-gate coupling in FET-based biosensor for the detection of cardiac troponin I (cTnI) biomarker. In the device structure, zinc oxide nanoparticles (ZnO-NPs) thin film were deposited through sol-gel and spin coating techniques on the channel. The p-type silicon was used as a substrate, while ZnO is an n-type nanomaterial, thus creates p-n-p junction between source, channel, and drain. The deposited thin films exhibited hexagonal wurtzite phase of ZnO, suitable for biomolecular interaction as revealed in X-ray diffraction (XRD) analysis. The surface of the thin film was then functionalized with 3-aminopropyltriethoxysilane (APTES), followed by glutaraldehyde (GA) as a bi-functional linker to immobilize the cTnI monoclonal antibody (MAb-cTnI) as bio-receptor for capturing cTnI biomarker and proven by the Fourier transform-infrared (FT-IR) spectra. Lastly, we demonstrated a new strategy, the integration of FET-based biosensors with substrate-gate showed differences between before (immobilization) and after cTnI target biomarker interaction by significant changes in drain current (ID) and change of threshold voltage (VT), which improved the sensitive detection, with the limit of detection down to 3.24 pg/ml.

Keywords – Biosensor, Cardiac troponin I, Electrical-based, Field-effect transistor, Substrate-gate coupling, Zinc oxide nanoparticles

Corresponding Author: Uda Hashim
Corresponding Author’s Email: uda@unimap.edu.my

Full text: PDF

Filed Under: Publications Tagged With: Biosensor, Cardiac troponin I, Electrical-based, Field-effect transistor, Substrate-gate coupling, Zinc oxide nanoparticles

A direct detection of human papillomavirus 16 genomic DNA using gold nanoprobes

December 8, 2016 By Editor

Abstract – Nanoparticles have been investigated as flagging tests for the sensitive DNA recognition that can be utilized as a part of field applications to defeat restrictions. Gold nanoparticles (AuNPs) have been widely utilized due to its optical property and capacity to get functionalized with a mixed bag of biomolecules. This study exhibits the utilization of AuNPs functionalized with single-stranded oligonucleotide (AuNP-oligo test) for fast the identification of Human Papillomavirus (HPV). This test is displayed on interdigitated electrode sensor and supported by colorimetric assay. DNA conjugated AuNP has optical property that can be controlled for the applications in diagnostics. With its identification abilities, this methodology incorporates minimal effort, strong reagents and basic identification of HPV.

Keywords – Colorimetric detection, DNA detection, Gold nanoparticles, Human Papillomavirus, Interdigitated electrode sensor

Corresponding Author: Uda Hashim
Corresponding Author’s Email: uda@unimap.edu.my

Full text: PDF

Filed Under: Publications Tagged With: Colorimetric detection, DNA detection, Gold nanoparticles, Human Papillomavirus, Interdigitated electrode sensor

  • « Previous Page
  • 1
  • …
  • 29
  • 30
  • 31
  • 32
  • 33
  • …
  • 46
  • Next Page »

NEWS @ INEE

  • Cahaya Prihatin Program: Electricity for the Community 2025
  • The 2nd International Conference on Nanotechnology & Materials Research (ICONMAR 2025)
  • Recognition of Excellence: Prof. Dr. Subash Chandra Bose Gopinath Among World’s Top 2% Scientists
  • STEM Open Day Kampung Sena @ UniMAP
  • INEE at STEM Carnival, Sekolah Menengah Sains Kubang Pasu

EVENTS & ACTIVITIES

  • Visit by SJK (C) Nan Kwang Students
  • INEE Nano Roadshow – Series 4
  • NanoBiosensor Workshop 2024
  • Invitation To Nanobiosensor Workshop 2024
  • NANO ROADSHOW @ PSNCWU
Privacy Policy | Security Policy | Disclaimer | Sitemap | FAQ | Feedback | User Guide | Download | Postgraduate

Institute of Nano Electronic Engineering, Universiti Malaysia Perlis
Lot 106, 108 & 110, Blok A, Taman Pertiwi Indah,
Jalan Kangar-Alor Setar, Seriab 01000 Kangar, Perlis, Malaysia
Tel: +604-979 8581 Fax: +604-979 8578 Email: webmaster.inee@unimap.edu.my

Copyright © INEE UniMAP

  • Facebook
  • Instagram
  • Twitter
  • YouTube

For best view, please use latest version of Internet Explorer, Mozilla Firefox and Google Chrome with resolution 1280 x 768 and above.

BioNexus Partners (BNP)

QS 5 Stars

myGov

Logo UniMAP

Designed by Mohd Isa from Portal Kerjaya & Sumber Rujukan Malaysia

  • Bahasa Melayu